CHANGING WHAT'S POSSIBI

REPAIR

Rapid Encapsulation of Pipelines $\underline{\text { Avoiding }}$ Intensive Replacement

PHMSA R\&D Forum

February 19, 2020
Arlington, VA.
Sade Ruffin, (Support Contractor to ARPA-E)
Sade.ruffin@hq.doe.gov
Jack Lewnard, Program Director ARPA-E
 Jack.lewnard@hq.doe.gov

INDUSTRY CHALLENGE

- Cast iron and bare steel pipes, collectively referred to as legacy pipes, account for 3% of the 2 million miles (3 million km) of utility pipes
- Account for a disproportionate number of leaks and failures
- Cast iron pipes are held together by mechanical joints which are prone to leaking
- The brittle materials leading to circumferential cracks
- Bare steel pipes are prone to pitting and general corrosion/wall loss.
- Methane leaks and pipe failures create operating risk and legal liability for utilities
- negatively impact the financial performance of system owners
- cost burden to gas consumers

COMMERCIAL SOLUTIONS AND TECHNICAL GAPS

Clamps

Keyhole encapsulation

Wraps

CISBOT

Pipe Bursting

CIPP liner

Slip-lining

MICP

SOLUTION: REPAIR

- Fabricate a new, "smart" pipe inside the old pipe
- Leverage advances in materials, robotics, and inspection tools
- Minimize gas service disruption
- Real-time 3D map/inspection with data visualization
- Demonstrate rehabilitated pipe is "better than new"
- Qualify rehabilitated pipe as a new assets in the utility rate base

STATE OF THE ART INNOVATIONS

INTEGRATED COATING DEPOSITION TOOL WITH INTEGRITY INSPECTION CAPABILITIES

- Composite pipes
- Water systems
- Advanced composites -- Fabrication techniques -- QC testing
- Aerospace
- Automotive
- Robotics
- Defense

3-D MAPPING

- LIDAR mapping
- DOD tools for unexploded ordinances and IEDs
- 3-D visualization from gaming industry

